Natural SUSY On Trial: Status of Higgsino Searches at ATLAS #### Julia Gonski Harvard University 25 October 2018 US LHC User's Association Annual Meeting # SUSY (The Defendant) - Provides unification of forces, dark matter candidate, and solution to hierarchy problem - Higgs mass quadratic corrections cancelled by new supersymmetric partners; higgsinos, stops and gluinos especially influential - → What do we search for first? (if we got to pick) Naturalness = reduce fine tuning ⇒ 10% (if we got to pick) Naturalness = reduce fine tuning ⇒ 10% (if we got to pick) Naturalness = reduce fine tuning ⇒ 10% $$\begin{array}{cccc} \widetilde{B} & \widetilde{W} & \widetilde{H} \\ & \downarrow & \\ \widetilde{\chi}_{2}^{\pm} & \widetilde{\chi}_{1}^{\pm} & \widetilde{\chi}_{4}^{0} & \widetilde{\chi}_{3}^{0} & \widetilde{\chi}_{2}^{0} & \widetilde{\chi}_{1}^{0} \end{array}$$ 5 (if we got to pick) Naturalness = reduce fine tuning ⇒ 10% Dark matter candidate! Dominantly (but not purely) higgsino (if we got to pick) Naturalness = reduce fine tuning ⇒ 10% - Dark matter candidate! Dominantly (but not purely) higgsino - Lightest three ewkinos are compressed (Δm ~ few GeV) ## Higgsino Searches at ATLAS Final state: 2 opposite sign same flavor soft leptons ## Higgsino Searches at ATLAS - Final state: 2 opposite sign same flavor soft leptons - Challenging! - Low production cross section - Small ∆m → low E_Tmiss, very soft leptons ### Higgsino Searches at ATLAS - Final state: 2 opposite sign same flavor soft leptons - Challenging! - Low production cross section - Small ∆m → low E_T^{miss}, very soft leptons [1] ATLASSummaryPlots [1] ATLASSummaryPlots [1] ATLASSummaryPlots Pure higgsino/wino state: Δm~100 MeV ⇒ long lifetime ~10⁻¹¹s [2] [2] ATL-PHYS-PUB-2017-19 [1] ATLASSummaryPlots Relic density disfavors pure higgsino LSP! (Well-Tempered Neutralino) [3] [3] <u>arXiv:0601041</u> ### Areas of Improvement [1] ATLASSummaryPlots 25 October 2018 J. Gonski 16 ### Areas of Improvement [1] ATLASSummaryPlots 25 October 2018 J. Gonski 17 #### What's Next? Natural SUSY is still well-motivated! (& experimental constraints are weakest in the electroweak sector) #### What's Next? - Natural SUSY is still well-motivated! (& experimental constraints are weakest in the electroweak sector) - Fine tuning < 10% possible for m(\tilde{g}) < 2.5 TeV and m(\tilde{t}) < 1.5 TeV [4] [4] arXiv:1611.05873 #### What's Next? - Natural SUSY is still well-motivated! (& experimental constraints are weakest in the electroweak sector) - Fine tuning < 10% possible for m(\tilde{g}) < 2.5 TeV and m(\tilde{t}) < 1.5 TeV [4] - Up next: softer leptons, 1L + track, HL-LHC! (2026+) [4] arXiv:1611.05873 # Backup ### Precision Corrections to Fine Tuning Buckley, Monteux, Shih arXiv:1611.05873 $$m_H^2 = m_{H,bare}^2 + \Delta m^2 - \Delta m^2$$ $$\Delta m^2 = |\mu|^2 \text{ (at tree level)}$$ $$\Delta \equiv \frac{2\delta m_H^2}{m_h^2} \le 10$$ $$\mu \le 400 GeV$$ ### Why Quasi-Degenerate? Depends on neutrino mass matrix in MSSM! Using $(\widetilde{B}^0, \widetilde{W}^0, \psi_d^0, \psi_u^0)$ basis $$M_{\tilde{N}^{0}} = \begin{pmatrix} M_{1} & 0 & -m_{W}t_{\theta_{W}}c_{\beta} & m_{W}t_{\theta_{W}}s_{\beta} \\ 0 & M_{2} & m_{W}c_{\beta} & -m_{W}s_{\beta} \\ -m_{W}t_{\theta_{W}}c_{\beta} & m_{W}c_{\beta} & 0 & -\mu \\ m_{W}t_{\theta_{W}}s_{\beta} & -m_{W}s_{\beta} & -\mu & 0 \end{pmatrix} \qquad M_{\tilde{C}} = \begin{pmatrix} M_{2} & \sqrt{2}s_{\beta}m_{W} \\ \sqrt{2}c_{\beta}m_{W} & \mu \end{pmatrix}$$ $$\left| m_{\chi_1^{\pm}} \right| - \left| m_{\chi_1^{0}} \right| \approx \frac{m_W^2 (1 \mp s_{2\beta})}{2(M_2 + |\mu|)}$$ $$\left| m_{\chi_2^{0}} \right| - \left| m_{\chi_1^{\pm}} \right| \approx \frac{m_W^2 (1 \pm s_{2\beta})}{2(M_2 - |\mu|)}, \quad \left| m_{\chi_2^{0}} \right| - \left| m_{\chi_1^{0}} \right| \approx \frac{m_W^2 (\pm |\mu| s_{2\beta} + M_2)}{(M_2^2 - |\mu|^2)}$$ Wino/bino as lightest electroweakino, # light states is different! - · one neutral state for a light bino; - one neutral and one charged state for a light wino. arXiv:1401.1235 25 October 2018 J. Gonski 23 ### But we haven't found anything yet! #### The Stop Limits up-to ~1 TeV in stop mass ... but no limits if m(LSP) ≥ 400 GeV ### But we haven't found anything yet! #### The Gluino ## ATLAS SUSY Summary #### ATLAS SUSY Searches* - 95% CL Lower Limits #### ATLAS Preliminary $\sqrt{s} = 7.8.13 \text{ Te}$ | 00 | Model | e,μ, au,γ | Jets | $E_{ m T}^{ m miss}$ | ∫£ dt[fb | ⁻¹] Mas | s limit | | $\sqrt{s}=7,$ | $\frac{3 \text{ TeV}}{\sqrt{s}} = 13 \text{ TeV}$ | $\sqrt{s} = 7, 8, 13 \text{ Te}$ \ Reference | |---|--|---|---|----------------------|------------------------------|---|------------------------|-------------------------|-------------------------------------|--|--| | S | $\tilde{q} ilde{q}, ilde{q}\! ightarrow\!q\! ilde{\chi}_{1}^{0}$ | 0
mono-jet | 2-6 jets
1-3 jets | Yes
Yes | 36.1
36.1 | q̃ [2x, 8x Degen.] q̃ [1x, 8x Degen.] | 0.43 | 0.9 | 1.55 | $m(ar{\chi}_1^0)$ <100 GeV $m(ar{q})$ - $m(ar{\chi}_1^0)$ =5 GeV | 1712.02332
1711.03301 | | arche | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ | 0 | 2-6 jets | Yes | 36.1 | ğ
ğ | | Forbidden | 2.0
0.95-1.6 | $m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{\chi}_1^0)$ =900 GeV | 1712.02332
1712.02332 | | e Se | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{\perp}^{0}$ | 3 e, μ
ee, μμ | 4 jets
2 jets | -
Yes | 36.1
36.1 | \tilde{g} \tilde{g} | | | 1.85 | $m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV | 1706.03731
1805.11381 | | Inclusive Searches | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ | $\overset{0}{\text{3 }e,\mu}$ | 7-11 jets
4 jets | Yes
- | 36.1
36.1 | \tilde{g}
\tilde{g} | | 0.98 | 1.8 | $m(\tilde{\chi}_{\perp}^{0})$ <400 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{\perp}^{0})$ =200 GeV | 1708.02794
1706.03731 | | | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$ | 0-1 e, μ
3 e, μ | 3 <i>b</i>
4 jets | Yes
- | 36.1
36.1 | $ ilde{ ilde{g}} ilde{ ilde{g}}$ | | | 2.0
1.25 | $m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =300 GeV | 1711.01901
1706.03731 | | 3 rd gen. squarks
direct production | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ | | Multiple
Multiple
Multiple | | 36.1
36.1
36.1 | $egin{array}{cccc} ilde{b}_1 & Forbidden & & & & & & & & & & & & & & & & & & &$ | Forbidden
Forbidden | 0.9
0.58-0.82
0.7 | m(ž | $\begin{array}{c} \text{m}(\bar{\chi}_{1}^{0}){=}300\text{GeV, BR}(b\bar{\chi}_{1}^{0}){=}1\\ \text{m}(\bar{\chi}_{1}^{0}){=}300\text{GeV, BR}(b\bar{\chi}_{1}^{0}){=}\text{BR}(t\bar{\chi}_{1}^{\pm}){=}0.5\\ \text{n}){=}200\text{GeV, m}(\bar{\chi}_{1}^{\pm}){=}300\text{GeV, BR}(t\bar{\chi}_{1}^{\pm}){=}1 \end{array}$ | 1708.09266, 1711.03301
1708.09266
1706.03731 | | | $\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$ | | Multiple
Multiple | | 36.1
36.1 | $egin{array}{ccc} ilde{t}_1 & & & & & \\ ilde{t}_1 & & & & & & & \\ \end{array}$ | | 0.7 | | $m(\tilde{\chi}_1^0)$ =60 GeV $m(\tilde{\chi}_1^0)$ =200 GeV | 1709.04183, 1711.11520, 1708.03247
1709.04183, 1711.11520, 1708.03247 | | | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}^0_1 \text{ or } t\tilde{\chi}^0_1$
$\tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP}$ | 0-2 <i>e</i> , <i>µ</i> 0 | 0-2 jets/1-2
Multiple
Multiple | b Yes | 36.1
36.1
36.1 | $egin{array}{cccc} ar{t}_1 & & & & & & \\ ar{t}_1 & & & & & & & \\ ar{t}_1 & & & & & & & & \\ \end{array}$ | | 0.4-0.9
0.6-0.8 | m(/
m(/ | $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$
$\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{\iota}_{1} \approx \tilde{\iota}_{L}$
$\tilde{\iota}_{1}^{0})=300 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{\iota}_{1} \approx \tilde{\iota}_{L}$ | 1506.08616, 1709.04183, 1711.11520
1709.04183, 1711.11520
1709.04183, 1711.11520 | | 3rd g
direc | $ ilde{t}_1 ilde{t}_1$, Well-Tempered LSP $ ilde{t}_1 ilde{t}_1$, $ ilde{t}_1{ ightarrow}c ilde{\chi}_1^0$ / $ ilde{c} ilde{c}$, $ ilde{c}{ ightarrow}c ilde{\chi}_1^0$ | 0 | Multiple
2c
mono-jet | Yes | 36.1
36.1
36.1 | \vec{\tilde{\tilde{t}}_1}{\vec{t}_1} \\ \vec{\tilde{t}}_1 \\ \vec{\tilde{t}}_2 \\ \vec{\tilde{t}}_3 \\ \vec{\tilde{t}}_2 \\ \vec{\tilde{t}}_3 \\ \vec{\tilde{t}}_4 \\ \vec{\tilde{t}}_5 \tilde | 0.46
0.43 | 0.48-0.84
0.85 | m(/ | ${\bf m}_{1}^{(0)} = 150 {\rm GeV}, {\bf m}(\tilde{\chi}_{1}^{\pm}) - {\bf m}(\tilde{\chi}_{1}^{0}) = 5 {\rm GeV}, \tilde{t}_{1} \approx \tilde{t}_{L} \\ {\bf m}(\tilde{t}_{1}^{0}) = 0 {\rm GeV} \\ {\bf m}(\tilde{t}_{1}, \tilde{c}) - {\bf m}(\tilde{\chi}_{1}^{0}) = 50 {\rm GeV} \\ {\bf m}(\tilde{t}_{1}, \tilde{c}) - {\bf m}(\tilde{\chi}_{1}^{0}) = 5 {\rm GeV} \\ \end{array}$ | 1709.04183, 1711.11520
1805.01649
1805.01649
1711.03301 | | | $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ | 1-2 <i>e</i> , μ | 4 <i>b</i> | Yes
Yes | 36.1 | $ ilde{t}_1$ $ ilde{t}_2$ | 0.43 | 0.32-0.88 | | $m(\tilde{t}_1,c)$ - $m(\tilde{t}_1)$ =5 GeV
$m(\tilde{\chi}_1^0)$ =0 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$ = 180 GeV | 1706.03986 | | | $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ | 2-3 e, μ
ee, μμ | ≥ 1 | Yes
Yes | 36.1
36.1 | $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.17 | (| 0.6 | | $m(\tilde{\chi}_{\perp}^{\pm})=0$
$m(\tilde{\chi}_{\perp}^{\pm})=m(\tilde{\chi}_{\perp}^{0})=10 \text{ GeV}$ | 1403.5294, 1806.02293
1712.08119 | | EW
direct | $ \begin{array}{l} \tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \text{ via } Wh \\ \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}/\tilde{\chi}_2^0, \tilde{\chi}_1^{+} {\to} \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 {\to} \tilde{\tau} \tau(\nu \tilde{\nu}) \end{array} $ | <i>ℓℓ/ℓγγ/ℓbb</i>
2 τ | - | Yes
Yes | 20.3
36.1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 0.76 | $m(ilde{\mathcal{K}}_1^\pm)$ - m | $m(\bar{\chi}_{1}^{0})=0$
$m(\bar{\chi}_{1}^{0})=0$
$m(\bar{\chi}_{1}^{0})=0$, $m(\bar{\tau},\bar{\nu})=0.5(m(\bar{\chi}_{1}^{\pm})+m(\bar{\chi}_{1}^{0}))$
$(\bar{\chi}_{1}^{0})=100$ GeV, $m(\bar{\tau},\bar{\nu})=0.5(m(\bar{\chi}_{1}^{\pm})+m(\bar{\chi}_{1}^{0}))$ | 1501.07110
1708.07875
1708.07875 | | | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell}{ ightarrow}\ell\tilde{\chi}_{\perp}^{0}$ | $\begin{array}{c} 2\ e, \mu \\ 2\ e, \mu \end{array}$ | 0
≥ 1 | Yes
Yes | 36.1
36.1 | $ ilde{\ell}$ 0.18 | 0.5 | | | $m(\bar{\ell}_1^0)=0$
$m(\tilde{\ell})$ - $m(\bar{\ell}_1^0)=5$ GeV | 1803.02762
1712.08119 | | | $\widetilde{H}\widetilde{H}$, $\widetilde{H}{ ightarrow}h\widetilde{G}/Z\widetilde{G}$ | $\overset{0}{\text{4}}{e},\mu$ | $\geq 3b$ | Yes
Yes | 36.1
36.1 | H | | 0.29-0.88 | | $BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$
$BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1$ | 1806.04030
1804.03602 | | Long-lived particles | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ | Disapp. trk | 1 jet | Yes | 36.1 | $ \tilde{X}_{1}^{\pm} $ $ \tilde{X}_{1}^{\pm} $ 0.15 | 0.46 | | | Pure Wino
Pure Higgsino | 1712.02118
ATL-PHYS-PUB-2017-019 | | | Stable \tilde{g} R-hadron
Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}^0_1$
GMSB, $\tilde{\chi}^0_1 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}^0_1$
$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$ | SMP 2γ displ. $ee/e\mu/\mu_0$ | -
Multiple
-
u - | Yes | 3.2
32.8
20.3
20.3 | $egin{aligned} & & & & \\ & & & & \\ & & & & \\ & & & & $ | 0.44 | | 1.6
1.6 | 2.4 $ m(\tilde{\chi}^0_1) = 100 \text{ GeV} $ $ 1 < r(\tilde{\chi}^0_1) < 3 \text{ ns, SPS8 model} $ $ 6 < cr(\tilde{\chi}^0_1) < 1000 \text{ mm, m}(\tilde{\chi}^0_1) = 1 \text{ TeV} $ | 1606.05129
1710.04901, 1604.04520
1409.5542
1504.05162 | | RPV | $ \begin{array}{c} LFV \; pp \!$ | eμ,eτ,μτ
4 e, μ
0 4- | 0
5 large- <i>R</i> j
Multiple | -
Yes
ets - | 3.2
36.1
36.1
36.1 | $\begin{split} \tilde{Y}_{\tau} \\ \tilde{X}_{-}^{1} / \tilde{X}_{0}^{0} & [A_{i33} \neq 0, A_{12k} \neq 0] \\ \tilde{g} & [m_{i} \tilde{X}_{0}^{0}] = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{\chi}_{12}^{u} = 2e \cdot 4, 2e \cdot 5] \end{split}$ | | 0.82 | 1.9
1.33
1.3 1.9
5 2.0 | λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07
$m(\tilde{\chi}^0_1)$ =100 GeV
Large λ''_{112}
$m(\tilde{\chi}^0_1)$ =200 GeV, bino-like | 1607.08079
1804.03602
1804.03568
ATLAS-CONF-2018-003 | | | $\begin{split} \tilde{g}\tilde{g},\tilde{g}\to tbs/\tilde{g}\to t\tilde{k}_1^0,\tilde{\chi}_1^0\to tbs\\ \tilde{t}\tilde{t},\tilde{t}\to k\tilde{\chi}_1^0,\tilde{\chi}_1^0\to tbs\\ \tilde{t}_1\tilde{t}_1,\tilde{t}_1\to bs\\ \tilde{t}_1\tilde{t}_1,\tilde{t}_1\to b\ell \end{split}$ | 0
2 <i>e</i> ,μ | Multiple
Multiple
2 jets + 2 i
2 b | b - | 36.1
36.1
36.7
36.1 | $ \tilde{g} = [A''_{333} = 1, 1e-2] $ $ \tilde{g} = [A''_{332} = 2e-4, 1e-2] $ $ \tilde{I}_1 = [qq, bs] $ | 0.55
0.42 0 | 1.05
.61 | 1.8 2.1
0.4-1.45 | m($\tilde{\chi}_1^0$)=200 GeV, bino-like
m($\tilde{\chi}_1^0$)=200 GeV, bino-like
BR($\tilde{t}_1 \rightarrow be/b\mu$)>20% | ATLAS-CONF-2018-003
ATLAS-CONF-2018-003
1710.07171
1710.05544 | | | a selection of the available ma | | | es or | 1 | 0 ⁻¹ | 1 1 | | | Mass scale [TeV] | | ^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. 25 October 2018 J. Gonski 26 ### 2L Higgsino Search - **Met** > 200 GeV → trigger - $p_T(jet1)>200 \text{ GeV} \rightarrow ISR$ - $|\Delta \phi(\text{jet,Met})| > 1.0 \rightarrow \text{mis-measured Met}$ - **nJet(50 GeV)**=1,2 \rightarrow no jets expected from the signal - bJet veto → ttbar background - upper cut on lepton $p_T \rightarrow$ soft leptons in the final state; - upper cut on $m_{II} \rightarrow$ small invariant masses expected; - Met/Ht → good discrimination as seen in the Run-2 analysis; - $\mathbf{m}\tau\tau \to Z\tau\tau$ background; ### Making E_Tmiss with ISR - With no other final state objects, LSPs are back to back, no E_Tmiss in event - Require ISR jet: collimate LSPs, generate measurable E_Tmiss for trigger